TEORIA GRACELI DOS ESTADOS TRANSICIONAIS POTENCIAIS RELATIVOS INDETERMINADOS NO SDCTIE GRACELI.


CONFORME AS ESPECIFICIDADES ENVOLVENDO O SDCTIE GRACELI, SE EM VARIAÇÕES DIFERENCIADAS PARA CADA TIPO DE ESTRUTURA DE MATÉRIA E ENERGIA, E FENÔMENOS. E CONFORME O SDCTIE GRACELI.




 TEORIA GRACELI DA TRANSFORMAÇÃO NO SDCTIE GRACELI


 TEORIA GRACELI DA TRANSFORMAÇÃO NO SDCTIE GRACELI.

TODA E QUALQUER FORMA DE TRANSFORMAÇÃO OCORREM CONFORME O SISTEMA SDCTIE GRACELI.


QUE SE FUNDAMENTA EM:


TODO E QUALQUER TIPO DE ESTRUTURA, E ENERGIA SE ENCONTRA EM TRANSFORMAÇÃO CONFORME O SDCTIE GRACELI




 A LÓGICA QUÂNTICA SDCTIE GRACELI SE FUNDAMENTA EM CINCO PILARES DA FÍSICA E FILOSOFIA DESENVOLVIDOS POR GRACELI.


QUE SÃO DEZ OU MAIS DIMENSÕES DE GRACELI, PODENDO CHEGAR A MAIS DE QUARENTA.

QUE SE FUNDAMENTA EM DIMENSÕES DA MATÉRIA E DIMENSÕES DE PROCESSOS FÍSICOS, QUÍMICO, E QUE TAMBÉM PODE SER ENVOLVIDO NA BIOLOGIA QUÂNTICA.

OU SEJA, NÃO SÃO DIMENSÕES DO ESPAÇO E TEMPO.


OU SEJA, TRATA DE CAPACIDADES ENVOLVENDO A MATÉRIA E AS ESTRUTURAS, COM SUAS INTERAÇÕES ENERGIAS, FENÔMENOS E ESTADOS FÍSICOS, TRANSICIONAIS E ESTADOS POTENCIAIS DE GRACELI.


CATEGORIAS DE GRACELI.


QUE TRATA DAS CATEGORIAS DE GRACELI.

QUE SÃO TIPOS, NÍVEIS OU INTENSIDADE OU QUANTIDADE, POTENCIAIS OU CAPACIDADES, E TEMPO DE AÇÃO, O TEMPO DE AÇÃO NÃO SEGUE UMA LINEARIDADE, OU SEJA, O TEMPO DE UM PROCESSO X NO INÍCIO, NÃO TEM OS MESMOS FENÔMENOS E INTENSIDADE NO TEMPO Y NO FINAL DE UM PROCESSO, ISTO EM TODAS AS ÁREAS DA FÍSICA E SEUS RAMOS, QUÍMICA E BIOLOGIA FÍSICA.


ESPAÇO E ESTADOS TRANSICIONAIS E POTENCIAIS DE GRACELI.


QUE TRATA DAS CONDIÇÕES E POTENCIALIDADES DE TRANSIÇÕES ENTRE ESTADOS E ESPAÇOS DE GRACELI, ASSIM, COMO SEUS POTENCIAIS [ESTADOS POTENCIAIS].



INTERAÇÕES .

QUE TRATA DO UNIVERSO DE INTERAÇÕES NO SISTEMA DE DIMENSÕES DE GRACELI.

E QUE ENVOLVE TAMBÉM INTERAÇÕES DE ESPAÇO E TEMPO, CAMPOS, ENERGIAS, E ESTRUTURAS ELETRÔNICAS, E OUTROS.


TRANSFORMAÇÕES.

ONDE AS TRANSFORMAÇÕES DETERMINAM O UNIVERSO DINÂMICO E VARIACIONAL DE TODO SISTEMA.

OU SEJA, TOO X SERÁ OUTRO X, NO TEMPO FUTURO, MESMO O TEMPO NÃO EXISTINDO COMO COISA EM SI. 

ONDE AS DIMENSÕES PODEM VARIAR DE DEZ ATÉ MAIS DE QUARENTA.




E QUE SE FUNDAMENTA NA FUNÇÃO GERAL:



TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll  *  D
             

X
 [ESTADO QUÂNTICO]


Sistema quântico de dois estados

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa

Na mecânica quântica, um sistema de dois estados (também conhecido como sistema de dois níveis) é um sistema quântico que pode existir em qualquer superposição quântica de dois estados quânticos independentes (fisicamente distinguíveis). O espaço de Hilbert descrevendo tal sistema é bidimensional. Portanto, uma base completa que liga o espaço consistirá em dois estados independentes. Qualquer sistema de dois estados também pode ser visto como um qubit.

Representação do sistema quântico de dois estados

O estado de um sistema quântico de dois estados pode ser descrito por um espaço bidimensional complexo de Hilbert. Isso significa que cada vetor de estado  é representado por duas coordenadas complexas:

 onde,  and  são as coordenadas.[1]

Se os vetores são normalizados,  e  são relacionados por . Os vetores base são representados como  e  Todas as grandezas físicas observáveis associadas a este sistema são matrizes Hermitianas 2  2 . O Hamiltoniano do sistema é também uma matriz Hermitiana 2  2.

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI



Potential delta

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa

Na mecânica quântica, o potencial delta é um poço de potencial matematicamente descrito pela função delta de Dirac - uma função generalizada. Qualitativamente, corresponde a um potencial[nt 1] que é zero em todos os lugares, exceto em um único ponto, onde leva um valor infinito[2].

Potencial delta único

equação de Schrödinger independente do tempo para a função de onda ψ(x) de uma partícula em uma dimensão em um potencial V(x) é

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI

onde ħ é a constante reduzida de Planck e E é a energia da partícula.

O potencial delta é o potencial

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


onde δ(x) é a função delta de Dirac.


É chamado um potencial de poço delta se λ é negativo e um potencial de barreira delta se λ é positivo. O delta foi definido para surgir na origem por simplicidade; uma mudança no argumento da função delta não altera nenhum dos resultados procedentes[3].




Potencial de Pöschl-Teller

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa

Em física matemática, um potencial de Pöschl-Teller, em homenagem aos físicos Herta Pöschl e Edward Teller, é uma classe especial de potenciais para os quais a equação de Schrödinger unidimensional pode ser resolvida em termos de funções especiais.

Definição

Na sua forma simétrica sua definição é explicitamente dada por[1]

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


e as soluções da equação de Schrödinger independente do tempo

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


com este potencial pode ser encontrado em virtude da substituição , que produz

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


.

Assim as soluções  (são apenas as funções de Legendre  com , e .[2][3] Além disso, os autovalores e os dados de espalhamento podem ser explicitamente computados[4]

No caso especial do inteiro , o potencial é sem reflexão e tais potenciais também surgem como as soluções de sóliton N da equação de Korteweg-de Vries.[5][6]

A forma mais geral do potencial é dada por[1]


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI



Pêndulo quântico

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa

pêndulo quântico é fundamental para entender as rotações internas impedidas na química, as características quânticas dos átomos de dispersão, bem como numerosos outros fenômenos quânticos.[1] Embora um pêndulo não sujeito à aproximação de pequeno ângulo tenha uma não-linearidade inerente, a equação de Schrödinger para o sistema quantizado pode ser resolvida de forma relativamente fácil.[2][3][4]

Equação de Schrödinger

Usando a teoria lagrangiana da mecânica clássica, pode-se desenvolver um hamiltoniano para o sistema. Um pêndulo simples tem uma coordenada generalizada (o deslocamento angular ) e duas restrições (o comprimento da corda e o plano de movimento). As energias cinéticas e potenciais do sistema podem ser encontradas em

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


Isso resulta no Hamiltoniano

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


A equação de Schrödinger dependente do tempo para o sistema é

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


É preciso resolver a equação de Schrödinger independente do tempo para encontrar os níveis de energia e os auto-estados correspondentes. Isso é efetuado melhor alterando a variável independente da seguinte maneira:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


Esta é a equação de Mathieu.[5]

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


onde as soluções são as funções Mathieu.[6][7][8]





Partícula livre

Origem: Wikipédia, a enciclopédia livre.
Saltar para a navegaçãoSaltar para a pesquisa

Na física, uma partícula livre é uma partícula que, em certo sentido, não está vinculada por uma força externa, ou equivalentemente não está em uma região onde sua energia potencial varia. Na física clássica, isso significa que a partícula está presente em um espaço "sem campo". Na mecânica quântica, significa uma região de potencial uniforme, geralmente modulada para zero na região de interesse, uma vez que o potencial pode ser arbitrariamente arranjado para zero em qualquer ponto (ou superfície em três dimensões) no espaço.

Índice


Descrição matemática

Partícula livre clássica

A partícula livre clássica é caracterizada simplesmente por uma velocidade fixa v. O momento linear é dado por

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


e a energia cinética, que é igual à energia total, é dada por

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


onde m é a massa da partícula e v é o vetor velocidade da partícula.

Partícula livre quântica

Uma partícula livre na mecânica quântica (não relativística) é descrita pela equação de Schrödinger livre:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


onde ψ é a função de onda da partícula na posição r e tempo t. A solução para uma partícula com momento p ou vetor de onda k, na freqüência angular ω ou energia E, é dada pela onda plana complexa:

com amplitude A. Como para todas as partículas quânticas livres ou ligadas, o princípio da incerteza de Heisenberg

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI


(da mesma forma para as direções y e z) e as relações De Broglie:[1]:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI

se aplicam. Como a energia potencial é adotada como zero, a energia total E é igual à energia cinética, que tem a mesma forma da física clássica:

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAI

Há várias equações que descrevem partículas relativísticas: veja equações de onda relativísticas.[2][3][4][5]




Comentários

Postagens mais visitadas deste blog